Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

Identifieur interne : 000337 ( Main/Exploration ); précédent : 000336; suivant : 000338

Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

Auteurs : Ganesh D. Saratale [Corée du Sud] ; Siddheshwar D. Kshirsagar ; Vilas T. Sampange ; Rijuta G. Saratale ; Sang-Eun Oh ; Sanjay P. Govindwar ; Min-Kyu Oh

Source :

RBID : pubmed:25374139

Descripteurs français

English descriptors

Abstract

Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

DOI: 10.1007/s12010-014-1227-1
PubMed: 25374139


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.</title>
<author>
<name sortKey="Saratale, Ganesh D" sort="Saratale, Ganesh D" uniqKey="Saratale G" first="Ganesh D" last="Saratale">Ganesh D. Saratale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713</wicri:regionArea>
<wicri:noRegion>136-713</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kshirsagar, Siddheshwar D" sort="Kshirsagar, Siddheshwar D" uniqKey="Kshirsagar S" first="Siddheshwar D" last="Kshirsagar">Siddheshwar D. Kshirsagar</name>
</author>
<author>
<name sortKey="Sampange, Vilas T" sort="Sampange, Vilas T" uniqKey="Sampange V" first="Vilas T" last="Sampange">Vilas T. Sampange</name>
</author>
<author>
<name sortKey="Saratale, Rijuta G" sort="Saratale, Rijuta G" uniqKey="Saratale R" first="Rijuta G" last="Saratale">Rijuta G. Saratale</name>
</author>
<author>
<name sortKey="Oh, Sang Eun" sort="Oh, Sang Eun" uniqKey="Oh S" first="Sang-Eun" last="Oh">Sang-Eun Oh</name>
</author>
<author>
<name sortKey="Govindwar, Sanjay P" sort="Govindwar, Sanjay P" uniqKey="Govindwar S" first="Sanjay P" last="Govindwar">Sanjay P. Govindwar</name>
</author>
<author>
<name sortKey="Oh, Min Kyu" sort="Oh, Min Kyu" uniqKey="Oh M" first="Min-Kyu" last="Oh">Min-Kyu Oh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25374139</idno>
<idno type="pmid">25374139</idno>
<idno type="doi">10.1007/s12010-014-1227-1</idno>
<idno type="wicri:Area/Main/Corpus">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000290</idno>
<idno type="wicri:Area/Main/Curation">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000290</idno>
<idno type="wicri:Area/Main/Exploration">000290</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.</title>
<author>
<name sortKey="Saratale, Ganesh D" sort="Saratale, Ganesh D" uniqKey="Saratale G" first="Ganesh D" last="Saratale">Ganesh D. Saratale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713</wicri:regionArea>
<wicri:noRegion>136-713</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kshirsagar, Siddheshwar D" sort="Kshirsagar, Siddheshwar D" uniqKey="Kshirsagar S" first="Siddheshwar D" last="Kshirsagar">Siddheshwar D. Kshirsagar</name>
</author>
<author>
<name sortKey="Sampange, Vilas T" sort="Sampange, Vilas T" uniqKey="Sampange V" first="Vilas T" last="Sampange">Vilas T. Sampange</name>
</author>
<author>
<name sortKey="Saratale, Rijuta G" sort="Saratale, Rijuta G" uniqKey="Saratale R" first="Rijuta G" last="Saratale">Rijuta G. Saratale</name>
</author>
<author>
<name sortKey="Oh, Sang Eun" sort="Oh, Sang Eun" uniqKey="Oh S" first="Sang-Eun" last="Oh">Sang-Eun Oh</name>
</author>
<author>
<name sortKey="Govindwar, Sanjay P" sort="Govindwar, Sanjay P" uniqKey="Govindwar S" first="Sanjay P" last="Govindwar">Sanjay P. Govindwar</name>
</author>
<author>
<name sortKey="Oh, Min Kyu" sort="Oh, Min Kyu" uniqKey="Oh M" first="Min-Kyu" last="Oh">Min-Kyu Oh</name>
</author>
</analytic>
<series>
<title level="j">Applied biochemistry and biotechnology</title>
<idno type="eISSN">1559-0291</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Biofuels (MeSH)</term>
<term>Cellulase (chemistry)</term>
<term>Clostridium beijerinckii (growth & development)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Hydrogen (metabolism)</term>
<term>Medical Waste Disposal (methods)</term>
<term>Phanerochaete (enzymology)</term>
<term>Solid Waste (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (MeSH)</term>
<term>Biocarburants (MeSH)</term>
<term>Cellulase (composition chimique)</term>
<term>Clostridium beijerinckii (croissance et développement)</term>
<term>Déchets solides (MeSH)</term>
<term>Glycosidases (composition chimique)</term>
<term>Hydrogène (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Élimination des déchets médicaux (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulase</term>
<term>Fungal Proteins</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="methods" xml:lang="en">
<term>Medical Waste Disposal</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
<term>Solid Waste</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulase</term>
<term>Glycosidases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Clostridium beijerinckii</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Clostridium beijerinckii</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Élimination des déchets médicaux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agriculture</term>
<term>Biocarburants</term>
<term>Déchets solides</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25374139</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-0291</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>174</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied biochemistry and biotechnology</Title>
<ISOAbbreviation>Appl Biochem Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.</ArticleTitle>
<Pagination>
<MedlinePgn>2801-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12010-014-1227-1</ELocationID>
<Abstract>
<AbstractText>Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saratale</LastName>
<ForeName>Ganesh D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kshirsagar</LastName>
<ForeName>Siddheshwar D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sampange</LastName>
<ForeName>Vilas T</ForeName>
<Initials>VT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saratale</LastName>
<ForeName>Rijuta G</ForeName>
<Initials>RG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Sang-Eun</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Govindwar</LastName>
<ForeName>Sanjay P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Min-Kyu</ForeName>
<Initials>MK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Biochem Biotechnol</MedlineTA>
<NlmUniqueID>8208561</NlmUniqueID>
<ISSNLinking>0273-2289</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017744">Medical Waste Disposal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062611">Solid Waste</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="C023305">hemicellulase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="Y">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046970" MajorTopicYN="N">Clostridium beijerinckii</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017744" MajorTopicYN="N">Medical Waste Disposal</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062611" MajorTopicYN="Y">Solid Waste</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25374139</ArticleId>
<ArticleId IdType="doi">10.1007/s12010-014-1227-1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Govindwar, Sanjay P" sort="Govindwar, Sanjay P" uniqKey="Govindwar S" first="Sanjay P" last="Govindwar">Sanjay P. Govindwar</name>
<name sortKey="Kshirsagar, Siddheshwar D" sort="Kshirsagar, Siddheshwar D" uniqKey="Kshirsagar S" first="Siddheshwar D" last="Kshirsagar">Siddheshwar D. Kshirsagar</name>
<name sortKey="Oh, Min Kyu" sort="Oh, Min Kyu" uniqKey="Oh M" first="Min-Kyu" last="Oh">Min-Kyu Oh</name>
<name sortKey="Oh, Sang Eun" sort="Oh, Sang Eun" uniqKey="Oh S" first="Sang-Eun" last="Oh">Sang-Eun Oh</name>
<name sortKey="Sampange, Vilas T" sort="Sampange, Vilas T" uniqKey="Sampange V" first="Vilas T" last="Sampange">Vilas T. Sampange</name>
<name sortKey="Saratale, Rijuta G" sort="Saratale, Rijuta G" uniqKey="Saratale R" first="Rijuta G" last="Saratale">Rijuta G. Saratale</name>
</noCountry>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Saratale, Ganesh D" sort="Saratale, Ganesh D" uniqKey="Saratale G" first="Ganesh D" last="Saratale">Ganesh D. Saratale</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000337 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000337 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25374139
   |texte=   Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25374139" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020